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Steady-state Conditions of High-temperature Plasma. A

Pinch in a Longitudinal Magnetic Field.

E. F. Tkalich and V. S. Tkalich

Steady-state conditions of high-temperature
plasma are studied in a kinetic approximation.
We investigate the radial distribution of density,
azimuthal current, and other macroscopic physical
values in a pinch with longitudinal magnetic field.

A pinch compressed by the magnetic field of its own current was

analyzed on the basis of a kinetic approximation by Bennett [1] and

later by Chyulli and Miku [2]. The investigation of a plasma cylinder

in equilibrium by an outside magnetic field was conducted by Tonks

(3] who studied in detail the possible forms of electron trajectories.

Certain steady-state kinetic problems were examined by Morozov and

Solov'ev [4].

Vlasov [5] formulated the general problem of space-bounded plasma;

the concept of a plasmoid condition is introduced, and a series of

plasmoids are examined with the aid of a distribution function, the

exponential curve index of which is quadratic with respect to velocity.

H. Grad [6] examined the boundary between a noncolliding plasma and

a magnetic field in a Cartcol-n coordinate system, and he studied
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trajectories by means of exact solutions. One of the authors [7]

studied the steady-state problem of a high-temperature plasma with

the aid of distribution functions which were a generalization of the

Maxwellian distribution law. In this article we will investigate

the steady-state conditions based on distribution functions closely

related to the Maxwellian structure and we will study the fundamental

macroscopic characteristics of a pinch in a longitudinal magnetic

field.

1. High-temperature plasma can be described by kinetic equations

without terms which take into account interaction at small distances

[8-11]. Removing Poisson brackets [9, 10, 12] in the kinetic equation

for type k ions in an arbitrary orthogonal system of coordinates [131

(q,, q2, q3), we will obtain

0 .. (k= ,. 2, N)."-- (e,,. q.)-- -

Here N is the number of particle types. Summation with respect to a

is performed everywhere from 1 to 3 (a 1 1, 2, 3). Canonical variables

of charged particles in an electromagnetic field - the Hamiltonian

% and components of total momentum P have the form
k

2nh; C

The values h0 , pka, W ka are the Lame coefficient, a component of the

momentum of type k ions, and generalized velocity, respectively;

9 and A are electromagnetic potentials.

Temperature is presented as a dispersion of linear velocity [i];

thus, for temperature Tk of type k ions in direction a we will have

the following expreosion:
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In the future we will call such a problem in which

the basic set of physical values - electrical field, magnetic field,

distribution function, and Lame's coefficients- do not depend. ,on

,time, a steady-state problem. We will call a cyclical coordinate -'-

one on which the values of the fundamental composite do not depend.

2. We will examine the steady-state problem in which the coordi-

nate qs is cyclical. In this case the function of the integrals of

symmetry fk =  fk P is the partial solution of the kinetic

equation. Let the vector potential have only the third component

depending on the first two coordinates A - A(ql, q2)es, the electrical

field does not have the third component. Then from Maxwell's

equations we obtain [15] the following system for the determination

of g and A:

h,:hAA-,-4 e. j fdp.dpp, = .

Summation with respect to I is performed everywhere from 1 to N(I -

1, 2,..., N), A is the Laplace operator [13].

Let the exponent of the distribution function be a linear

Hamiltonian function Xk and of momentum Pk Then for the distribution

function and density nk we will obtain the following expressions

k(2 n, XTA) P \2n;,Tr) L- h,,, -- -" - w) j
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In the future, the values nko and Wk will everywhere designate
ko ka

constant dimensions of density and of generalized velocity respectively;

Tk is constant in the sense of temperature. With the aid of the

distribution function we will determine the third component of the

ordered velocity Vk .

Svk = h~k. (2)

If the exponent of the distribution function is a linear

Hamiltonian function.N and quadratic function of momentum then

f and nk have the form

/ n - a 1 ,. 1'| el.~k

kk
n I--, -13 2)---,,( '"  h,

positive in the region where t here is plasma. At the points where A

becomes infinity when ak > 0 there will be no plasma; when a<0 I

the plasma accumulates at these points. With the aid of the afore-

mentioned distribution function and Relation (I) we will find the '

third component of velocity Vk and temperature Tks in a selectedi

direction

~~AA
I .,&

Rka. I & 2zk A) 2

3. We will examine the steAdy7-state problem with two cyclical
eoordinates q2 and q3 . The arbitary function of syju et intzrals

m= entn e k2' Pk3 ) is apLtial solution of the kineie equation.

thrdcopoen o vloit V ad emertue k I asee-e



If A and T depend only on the first coordinate, then assuming A, - 0,

we will obtain from Maxwell's equations (15] the following system of

equations for determining p, A2, and As:

d ?-r4-a e.j".dpjdp2dP3 = 0-

d . dr'A 4

a dia 4c A. -. J '+ P r'/'- -= " I-;r - -- .

The constant a takes the values 0 and 1 in a Cartesian and cylindrical

system of coordinates respectively; r is either a Cartesian coordinate

or a distance from the axis of symmetry.

Let the exponent of the distribution function be a linear

function of the Hamiltonian and of momenta. Then for the distribution

function and density we will obtain the following expressions:

Ia--- exp ( 17r-) -I-.-, -m ." - 1 Min

2
::.TL)', 2nt- , k:-:'.

rl @l, - TL3 A.rAk: 22

With the aid of the distribution function we will find the second

and third components of the ordered velocity

1V, = w,++/;, V, ,. (5)

We will examine a case where only electrons move, the ions will

be considered as stationary and cold. The ions play the role of the

background of density n+, which compensates the space charge of

electrons. We will introduce the constants a2 and a3, in the following

manner. In a Cartesian coordinate system 02 - 03 - 0. In a cylindri-

cal system 72 = 0, a3 = 1 in the case of an azimuthal magnetic field

(Al - 0); and a2 1 1, a3 = 0 in the case of a longitudinal mgnetic

field (A3 - 0). Substituting the distribution funtion in (4) for
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the determination of T, A2, and A3 we will obtain the following

II
system of equations:

1 d 1d * 4- .

7~d W W~(A±.---ew~n 0I

I d dA3 4X f,,d( d.. [ (6).
I d *do

A partial solutior of this system has the form

A. S% r - 1 (E .'4b

s ] 1

U2'.

tA

Here ro is a constant of linear dimension; p is a dimensionless

coordinate; a and b are dimensionless arbitrary constants; S takes

two values (S - + i). In the case of a longitudinal magnetic field

A3 - 0 when S - 1, a > 0, we will obtain the following class of solu-

tions in which is finite at a finite p:

A ? '- G"-* J "',T 1)

CIO- I.)_ 2 24C~e ---- e " (:-- *... it - .-- ,'..---"----"

Let the electrical field equal zero. Without lessening the generality,

the direction of electron rotation can be considered positive

(sign e --sign w). Then for the magnetic field and density we will

obtain the relations

'n-"f (7):4 .0 : -_ , t ? . - In ':- t -. , ' P . C R' S.

-6 ''a 
T
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Here RO is the Debye radius; n, is the maximum density (at the point

p - p*)& HO, Ht, H. are the values of the magnetic field at the axis

of symmetry, at infinity, and at the point of maximum density re-

spectively. Here the values w, H., H. are always positive and do not

vanish; the magnetic field satisfies the inequality
H--H.

Henceforth, in place of the magnetic field we will examine the

Larmor frequency of electrons (w - -! ). Analysis of Relation (7)mc"

shows that the magnetic field is a monotonically increasing function

of the radius. In connection with this the Larmor frequency and

angular velocity w vary within the following limits

If the conditions w < a < % are fulfilled, then the density

monotonically increases from the column axis, vanishing at infinity.

In the case where wo = w the formulas in (7) take a simple form

HH-,--(H.--1,)thp., R= .Ch-2p.

If the conditions wo < w < % (i.e. p.> 0), then the density is

maximum when p - p., and therefore decreases, vanishing at infinity.

In addition, the angular velocity satisfies inequality %o + % > 2w.

If the average radius of the column is much larger than the thickness

of the plasma layer (R >> L, then we have the relation

If the angular velocity changes within the limits of 0 < 2w < tu ,

then the magnkutic field changes sign. In this case it can take

significantly larger values with respect to the modulus.

Expressing the linear density "effective area" and the maximum

density by n., we will obtain the relation

S= X R, 11 - H,

Assuming S - rL2, in the case w c% we will obtain
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L'.12C2cR*

In the case S -2,RL and w - + ) (R >> 1) we will obtain

RL lC2R

4I. In a Cartesian system of coordinates we will examine the

distribution in which the exponent is a linear function of Hamiltonian

7k and a quadratic function of momenta Pke, and Pks" After identical

transformation, the distribution function and density take the form

A--r.Fk p, P W. , •

nk~n~eXP- 12 (-? -- ~ • -D

( ( e[-(~.)(A'( A-)A

k- (A-A.) a<b ) (A .) (

The vectors a - (0, a2, a3) and b - (0, b2, b3) are constants. The

ordered velocity Vk - (0, Vk, Vk) is determined from the relations

A I W- b)','b (8)
ek (a:\ b

ea X OAI (a X b)2

With the aid of Relation (I) we will determIne the temperatures in

the directions a and b

Taii- Tk, TO == , Ta.(9 (9 )
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5. We will examine a steady-state problem in a cylindrical sys-

tem of coordinates with two cylindrical coordinates e and Z. We will

determine the values 4p, A9, and Az from the system of (4), assuming

- 1.

Let the magnetic field be longitudinal and the exponent of the

distribution function be linearly dependent on the Hamiltonian (W,

and quadratically dependent on the azimuthal component of the total momen-

tum. If a uniform rotation of type k ions does not exist as a whole,

and on the column axis there are no peculiarities (lim 9 - 0,
r- 0

lim rA - 0), then dropping the index 8 from the azimuthal component
r-4 0

of the vector potential, we will write the distribution function and

the density as

(2'anud)'Tk VrT '

2mk1&iJiR.I-I (10)

r 7.,
Fkp, I , p _ -- ex

Floo

In order that the plasma density at infinity be equal to zero

and the magnetic field be different from zero, we will consider the

constant of integration essentially positive and we will designate

it by r2. With the aid of the distribution function we will deter-

mine the average value of the azimuthal component of velocity (Vk)

of type k ions

PA (-Li
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With the aid of Relation (1) we will determine the azimuthal tempera-

ture TkG(

Tk.
Z- (12)

6. The solution of the system of nonlinear equations is associated

with substantial mathematical difficulties. However, in the case of

a sufficiently small density (nko-. 0) it is permissible to dis-

regard the space charges and currents. Then the solution of system

(4) can be selected as

2,

where H is the constant magnetic field strength. Such a selection

corresponds to the case where the density at the axis of symmetry

is maximum. Substituting (i) into (10) we will find the density

distribution

With the determination of macroscopic values we will calculate

integrals of type

X4 . e 1 t X

approximately for two limiting cases e >>1 and >>1 . We will
kk

designate by Qk the number of particles of type k entering Into a

unit of column length and we will introduce into the examination a

"minimal" thickness of ion layer Lk, a Larmor radius of ions R;,

and a transverse heat velocity Uk .
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We will determine with the aid of (14)-(16) the constants of integra-

tion rko

• ( hi S rA , A =,
2v2r. i

Eliminating rko from (15) we will find the expression for ak

,.= ;) L, r; "=- R;, L.r. (18)
\2R k~~ k 2 VTRJ; L~)

The case k >> 1 (i.e.L k >>R) corresponds to a strong magnetic

field and to small heat velocities; the case Ek << 1(i.e. Lk <<

is realized for weak magnetic fields and large heat velocities. Using

relations (12), (14)-( 18), we will calculate the azimuthal temperature

T kO averaged over the plasma colv,"n cross section.

Tie T,(I sh-L,> R), ,(,;) .. ,a < R).

Thus, if the longitudinal magnetic field is ntrong, then the

averaged azimuthal temperature equals the radial. If the magnetic

field is small then the azimuthal temperature is significantly less

than the radial. Using Expressions (11), (14) -(18), we will calcu-

late the azimuthal current Ik which refers to a unit of column

length, and calculate the azimuthal velocity Vk averaged over the

column section.

1,,= r it".Qkeu;sig 49' 1 = V- (1n9) L,> :

.~ Q~ekuk siln w., V& ~ sin m (L&4 R;
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Consequently, if the magnctic field is small then the averaged

ordered velocity is close to the heat velocity, and the current is

proportional to the product of the number of particles times the

heat velocity. With strong magnetic fields, the velocities of

ordered movement are small compared with heat velocities (the mgnetic

field "freezes" the degrees of freedo) and the azimuthal current is

found to be inversely proportional to the magnetic field strength.

7. We will set the temperatures and space currents of all types

of ions as equal to zero, and we will consider the space current at

each point as compensated. Then the electron distribution will

be determined by the magnetic field, temperature, etc. In connec-

tion with this, the first and third equations of System (4) are

satisfied identically, and the second in the case of the distribution

function of type (10) takes the form

-. Ar Ijt

If the azimuthal component of the vector potential vanishes at

the axis of symmetry, then close to the column axis (when (r) 2 <<)

the approximate solution of the equation in (20) has the form

MAI 3 (21)

(u)4 ( e~r~H 02)

With the aid of (16), (17) we carry out the analysis of Solution

(21) in which the first term corresponds to a uniform magnetic field.

If the thickness of the plasma layer is less than the Larmor radius

(L << R*), then the additional terms are small compared to the first

term with the fulfillm~ent of the inequalities

-12-



< L H Y" I 1 ,

If the Larmor radius is small compared with the thickness of the

plasma layer (L >> R*), then the additional terms are small under

'the following conditions

Thus, the approximation is found to be satisfactory only inside

the plasma layer. The limits in which this approximation is valid

are wider, the stronger the magnetic field, the lower the temperature

and the less the density. The solution in (21) takes into account,

in the form of terms of a higher order with respect to radius,

the honlinear effects associated with the influence of characteristic

plasma currents on the magnetic field and distribution of density.

With sufficiently 3arge radii, the magnetic field is uniform and solu-

tions examined in a previous paragraph are satisfactory.

8. Let the temperatures of all types of ions be small compared

with the electron temperature. In the case of small density

( - 0, = 0, A = 1 2, using relations (II), (12), (14)-(17), we

*ill obtain the expressions for the average value of the azimuthal

component of velocity V, azimuthal temperature Te(r) and electron

density n(r);
V= 2-Z(oR . P r

To = L-*- q i;- -, I ; = 2" "'
-2 (22)

n (r)z = nL' ________r_,_

If the Laijior radius of electrons is large compared with the thick-

ness of the plasma layer, then when r - L the-density is significantly

-13-



less than at the axis. When L( r( R, the density of plasma is

small, but the number of particles in this layer is large. At a

sufficiently large distance from the axis of symmetry the number of

particles is very small.

If the Lapmor radius is small compared with the.-thickness of the

plasma layer, then from (22) it follows that close to the axis the

density is almost constant. When r - L the density sharply decreases

so that at great distances from the axis there are few particles.

Consequently with a fixed electron temperature the column has a

sharp boundary at sufficiently strong magnetic fields.

9. In the study distribution functions depending only on

integrals of symmetry U, P2, P3 are examined. Not diminishing the

generality, the distribution function can be taken as exponents

f=GcxpS(X. Pt P).

The analogy of entropy S artibrarily depends on the integrals of

symmetry. In the general case, in a.sufficiently small neighborhood

of any nonsingular point (Xo, P2o, P3o) the value S can be presented

as a Taylor series

s= N E,( (P.P P-- (P,- -2 .

If the physical conditions of the problem are such that the

fundamental contribution to the value S is made by a terms of a

lower order [in the general case - in a sufficiently small

neighborhood of a nonsingular point M, P2o, P3o)], then, having

eliminated terms of higher order, we will obtain for S an expression

in the form of a certain polynomial with respect to the Hamiltonian

and momenta. In the cases examined in this study, the polynomial

linearly depends on the Hamiltonian and is a linear or quadratic

FT 0-T-63373/+2+%- I-



function of momenta. With respect to its formal indication such a

distribution function is close to Maxwellian.

In the case of linear dependence of S on momenta, the tempera-

ture is constant, uniform and isotropic. Generalized velocities

are constant, components of linear velocity are proportional to.

-corresponding Lame's coefficients and do not depend on electrical or

magnetic potentials. The ordered movement of each of the types of

ions occurs as a movement of a solid. In a Cartesian system of

coordinates this case corresponds to interpenetrable plasma globs

whose ordered velocities are constant, and in a cylindrical system

it corresponds to plasma globs moving along the axis of symmetry

with constant velocities and rotating with constant angular velocities

In the case of a quadratic dependence on momenta, the tempera-

ture, generally speaking, is anisotropic and evidently does not

depend on electrical and magnetic potentials. In a Cartesian system

of coordinates thr temperature is constant and uniform and in a

curvilinear system depends on Lame's coefficients. Constatits,

characterizing the plasma state, enter into the expressions for

temperature and velocity. The velocities are linear functions of mag-

netic potential and depend on Lame's coefficients.
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